1  | 实验十一  | 
#1.无向图的双连通分量问题
##1.1结构化定义1
2
3
4
5
6
7
8
9
10
11//为了方便输出双联通分量,定义一个结构
struct myedge
{
	int start;
	int end;
	myedge(int a, int b)
	{
		start = a;
		end = b;
	}
};
1  | 
  | 
##1.2 关键函数1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44//Bicomponent Algorithm 
template<class T>
int MGraph<T>::BiDFS(int v)
{
	pre[v] = clock;
	clock++;
	back[v] = pre[v];
	while (getVexV(v))
	{
		myedge t = getFirstVw(v);
		edgeStack.push(t);
		vex_cnt[t.start]++;//辅助保存start出现次数
		if (pre[t.end] == -1)//如果是tree边
		{
			int wBack = BiDFS(t.end);
			if (wBack >= pre[v])
			{
				cout << "双连通分量:" << endl;
				int tmp = edgeStack.top().end;
				if (vex_cnt[tmp] > 0)
				{
					while (edgeStack.top().start != tmp)
					{
						cout << vexs[edgeStack.top().start] << "->" << vexs[edgeStack.top().end] << endl;
						vex_cnt[edgeStack.top().start]--;
						edgeStack.pop();
					}
				}
				cout << vexs[edgeStack.top().start] << "->" << vexs[edgeStack.top().end] << endl;
				vex_cnt[edgeStack.top().start]--;
				edgeStack.pop();
			}
			back[v] = min(back[v], wBack);
		}
		else
		{
			back[v] = min(pre[t.end], back[v]);
		}
	}
	post[v] = clock;
	clock++;
	return back[v];
}
##1.3 测试函数1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17int main()
{
	//char a[] = { '1', '2', '3', '4', '5','6','7','8' };
	char a[] = { 'A', 'B', 'C', 'D', 'E','F','G','H','I','J' };
	MGraph<char> m(a, 10, 14);
	cout << endl << "打印测试:" << endl;
	m.Print();
	cout << endl << "关节点测试测试:" << endl;
	m.BiDFS(9);
	cout << endl;
	cout << "pre/post/back值测试:\n";
	m.print_prepost();
	return 0;
}
##1.4 测试截图
#2理解与掌握在含负权值边的图中求最短路径问题的算法
简单,易理解 从源点出发,做V-1次大循环,每次对所有边进行松弛更新
##2.1BellmanFord1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35template <class T>
bool MGraph<T>::BellmanFord(int source)
{
	dist[source] = 0;
	for (int i = 1; i <= vexnum - 1; i++)
	{
		for (int u = 0; u < vexnum;u++)
		{
			for (int v = 0; v<vexnum;v++)
			{
				if (edges_view[u][v]==true)
				{
					update(u, v, edges[u][v]);
				}
			}
		}
	}
	// 判断是否有负环路
	for (int u = 0; u < vexnum; u++)
	{
		for (int v = 0; v < vexnum; v++)
		{
			if (edges_view[u][v] == true)
			{
				if (dist[v] > dist[u] + edges[u][v])
				{
					return false;
				}
			}
		}
	}
	return true;
}
##2.2更新1
2
3
4
5
6template <class T>
void MGraph<T>::update(int u, int v, int weight)
{
	if (dist[v] > dist[u] + weight)
		dist[v] = dist[u] + weight;
}
##2.3测试函数1
2
3
4
5
6
7
8
9
10
11int main()
{
	//char a[] = { 's', '2', '3', '4', '5','6','7','t' };
	//char a[] = { 'A', 'B', 'C', 'D', 'E','F','G','H','I','J' };
	char a[] = { 'A', 'B', 'C', 'D', 'E'};
	MGraph<char> m(a, 5, 8);
	cout << endl << "打印测试:" << endl;
	m.Print();
	m.Print_dist(1);
	return 0;
}
##2.4测试截图
