陈实 SA17011008 计算机学院 2017年10月31日
#一、实验环境描述
首先请参见实验环境的安装:
ubuntu实验环境的安装
#二、ubuntu_samples测试
本课程的实验,将会以两个平台进行,分别是ubuntu下以及windows下,ubuntu是来自于学校的服务器,windows是自己的笔记本,记录遇到的问题,供大家分享。
##2.1 deviceQuery
接下来,尝试几个例子:
首先cd到样例目录1
ubuntu@ubuntu:~/NVIDIA_CUDA-8.0_Samples/1_Utilities/deviceQuery$
我们通过make编译文件,再执行./deviceQuery ,即可看到服务器GPU相关信息:
我们把结果剪贴下来:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148Detected 4 CUDA Capable device(s)
Device 0: "Tesla K80"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 3.7
Total amount of global memory: 11440 MBytes (11995578368 bytes)
(13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
GPU Max Clock rate: 824 MHz (0.82 GHz)
Memory Clock rate: 2505 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 1572864 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 5 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 1: "Tesla K80"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 3.7
Total amount of global memory: 11440 MBytes (11995578368 bytes)
(13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
GPU Max Clock rate: 824 MHz (0.82 GHz)
Memory Clock rate: 2505 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 1572864 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 6 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 2: "Tesla K80"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 3.7
Total amount of global memory: 11440 MBytes (11995578368 bytes)
(13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
GPU Max Clock rate: 824 MHz (0.82 GHz)
Memory Clock rate: 2505 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 1572864 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 133 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
Device 3: "Tesla K80"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 3.7
Total amount of global memory: 11440 MBytes (11995578368 bytes)
(13) Multiprocessors, (192) CUDA Cores/MP: 2496 CUDA Cores
GPU Max Clock rate: 824 MHz (0.82 GHz)
Memory Clock rate: 2505 Mhz
Memory Bus Width: 384-bit
L2 Cache Size: 1572864 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 2 copy engine(s)
Run time limit on kernels: No
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Enabled
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 134 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
> Peer access from Tesla K80 (GPU0) -> Tesla K80 (GPU1) : Yes
> Peer access from Tesla K80 (GPU0) -> Tesla K80 (GPU2) : No
> Peer access from Tesla K80 (GPU0) -> Tesla K80 (GPU3) : No
> Peer access from Tesla K80 (GPU1) -> Tesla K80 (GPU0) : Yes
> Peer access from Tesla K80 (GPU1) -> Tesla K80 (GPU2) : No
> Peer access from Tesla K80 (GPU1) -> Tesla K80 (GPU3) : No
> Peer access from Tesla K80 (GPU2) -> Tesla K80 (GPU0) : No
> Peer access from Tesla K80 (GPU2) -> Tesla K80 (GPU1) : No
> Peer access from Tesla K80 (GPU2) -> Tesla K80 (GPU3) : Yes
> Peer access from Tesla K80 (GPU3) -> Tesla K80 (GPU0) : No
> Peer access from Tesla K80 (GPU3) -> Tesla K80 (GPU1) : No
> Peer access from Tesla K80 (GPU3) -> Tesla K80 (GPU2) : Yes
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 4, Device0 = Tesla K80, Device1 = Tesla K80, Device2 = Tesla K80, Device3 = Tesla K80
Result = PASS
从上面这一段,发现有四张显卡设备,不过记得当时拿到机器的时候,记得只分了两块K80,经查询,Tesla K80一块拥有俩GK210核心,从程序返回的结果来看,原配的2880个流处理器分成的15个阵列,也仅仅被打开了13组,这样,单核心,也就有2496个流处理器了,单卡的话就是两倍的核心,同时,单卡24G内存,确实为一块性能不错的GPU处理器。其他的参数也没有仔细看,用到了再说。
为了后续例子方便,我们在上级目录下,make整个sample,这样,就会为为子目录下面每一个程序,生存可执行文件了。
等到刷出Finished building CUDA samples,即安装完成。
##2.2 nvcc问题
想自行编译windows上的一个例子,不过输入nvcc,发现没有安装?
不过转念一想,通过make可以编译,那没道理没装nvcc,后来一想,可能是没有配置环境变量,转到cuda安装目录,一看nvcc好好的在那边。1
cd /usr/local/cuda/bin/
转去配置环境变量:1
2
3
4
5
6
7
8
9
10
11vim ~/.bashrc
#发现已经配置过环境变量,不过检查了一下,cuda路径不对,修改一下,顺便加上bin目录,
#在最后加上这几行
export LD_LIBRARY_PATH="$LD_LIBRARY_PATH:/usr/local/cuda/lib64:/usr/local/cuda/extras/CUPTI/lib64"
export CUDA_HOME=/usr/local/cuda
export PATH=$PATH:/usr/local/cuda/bin
#保存并刷新环境变量
source ~/.bashrc
再次测试nvcc,发现找到了:
#三、安装vnc server
因为server不能直接运行带有图形界面的代码,比如这一段简单的python代码:1
2
3
4
5
6
7
8# -*- coding:utf-8 -*-
from PIL import Image
import matplotlib.pyplot as plt
bg_pic = Image.open('01.jpg')
plt.figure()
plt.imshow(bg_pic)
plt.axis('off')
plt.show()
由于可能需要用到图形界面,在此装个vnc,简单记录下
安装服务:1
sudo apt-get install vnc4server
编辑下方文件的内容加上自己的信息:1
2
3
4vim /etc/sysconfig/vncservers
VNCSERVERS="1:inspur"
VNCSERVERARGS[1]="-geometry 1920x1080 -alwaysshared"
在自己的用户名下运行命令,启动vnc进程1
2
3vncserver
输入2次密码即可
http://blog.csdn.net/zhangfuliang123/article/details/51598552
在自己的用户下,修改/home/ubuntu/.vnc/xstartup
配置xsrartup内容如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15#!/bin/sh
# Uncomment the following two lines for normal desktop:
# unset SESSION_MANAGER
# exec /etc/X11/xinit/xinitrc
def
export XKL_XMODMAP_DISABLE=1
unset SESSION_MANAGER
unset DBUS_SESSION_BUS_ADDRESS
gnome-panel &
gnome-settings-daemon &
metacity &
nautilus &
gnome-terminal &
维护方法:1
2关闭:vncserver -kill :3
启动:vncserver :3
这样通过,windows上面的vncviewer连接,就可以运行带有图形界面的程序了。
四、windows测试
本机的电脑,由于毕业设计时候做的是强化学习的相关课题,已经装过了cuda环境,来加速tensorflow-gpu等环境的加速,由于当时没有做记录笔记,并且,没有什么安装难度,这边省略安装步骤。
##4.1 deviceQuery
在win下面我们利用vs进行cuda编程,本文windows实验环境为vs2013,首先运行例子deviceQuery,结果如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40 CUDA Device Query (Runtime API) version (CUDART static linking)
Detected 1 CUDA Capable device(s)
Device 0: "GeForce GT 755M"
CUDA Driver Version / Runtime Version 8.0 / 8.0
CUDA Capability Major/Minor version number: 3.0
Total amount of global memory: 2048 MBytes (2147483648 bytes)
( 2) Multiprocessors, (192) CUDA Cores/MP: 384 CUDA Cores
GPU Max Clock rate: 1020 MHz (1.02 GHz)
Memory Clock rate: 2700 Mhz
Memory Bus Width: 128-bit
L2 Cache Size: 262144 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 65536
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: No
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
CUDA Device Driver Mode (TCC or WDDM): WDDM (Windows Display Driver Model)
Device supports Unified Addressing (UVA): Yes
Device PCI Domain ID / Bus ID / location ID: 0 / 1 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 8.0, CUDA Runtime Version = 8.0, NumDevs = 1, Device0 = GeForce GT 755M
Result = PASS
##4.2 新建cuda项目&测试环境
如果安装过程正常无误,那么在vs中应该已经有了cuda模板,我们选择并新建一个cuda工程:
创建完之后,发现自带了一个cuda例子,我们运行,发现可以出结果,至此,cuda运行环境检查完毕
#五、cuda实验
##5.1 第一个程序 init.cu
首先了解cuda程序初始化的方式,于是先新建一个新的cudafile,开始编写,资料来自于课堂的ppt,并加以理解:
课堂PPT中的代码,没有详细说明每一行的作用,现在对其中的部分进行修改,以更深刻的理解。
先贴上代码:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48#include <cuda_runtime.h>
#include<iostream>
using namespace std;
//2017年10月23日
//陈实 SA17011008
//CUDA 初始化
bool InitCUDA()
{
int count;
//取得支持Cuda的装置的数目
cudaGetDeviceCount(&count);
//没有符合的硬件
if (count == 0) {
cout << "无可用的设备";
return false;
}
int i;
//检查每个设备支持的参数,如果获得的版本号大于1 ,认为找到设备
for (i = 0; i < count; i++) {
cudaDeviceProp prop;
if (cudaGetDeviceProperties(&prop, i) == cudaSuccess) {
if (prop.major >= 1) {
//输入 并打断点,调试观察
cout << "设备" << i << ":" << prop.major << "." << prop.minor << endl;
break;
}
}
}
if (i == count) {
cout << "未找到能支持1.x以上的cuda设备" << endl;
return false;
}
cudaSetDevice(i);
return true;
}
int main()
{
if (InitCUDA())
cout << "初始化成功!" << endl;
return 0;
}
通过查看prop变量,我们可以观察到很多的参数,并输出自己的设备支持的cuda版本:
windows上的运行结果是这样:(计算能力3.0)
通过winscp 传到服务器,编译并运行1
nvcc init.cu -o init.out
ubuntu服务器:(计算能力3.7)
##5.2 素数测试
###5.2.1 初始测试
本次实验准备以素数测试作为实验题材,进行一个素数的测试,采用不优化的全算法,测试时间。
实验预计采用int范围内最大的素数:2147483647
写了一份简单的代码,其中,核函数如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18__global__ static void is_prime_g(int *x, bool *result)
{
if (*x == 0 || *x == 1)
{
*result = false;
return;
}
for (int j = 2; j < *x; j++)
{
if (*x%j == 0)
{
*result = false;
return;
}
}
*result = true;
}
通过cudaApi获得gpu运行时间:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15cudaEvent_t start, stop;
float Gpu_time;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
//核函数
//........
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&Gpu_time, start, stop); //GPU 测时
cudaEventDestroy(start);
cudaEventDestroy(stop);
printf("Gpu time is: %f ms\n", Gpu_time);
通过clock记录cpu函数时间,循环执行多次,取得平均值:1
2
3
4
5
6
7begin = clock();//开始计时
for (int i = 0; i < n; i++)
{
//......
}
end = clock();//结束计时
printf("%d次总耗时%d ms 平均耗时:%f ms\n",n, end - begin, (end - begin)*1.0/n);//差为时间,单位毫秒
实验记录如下:
windows:
K20:
K80:
将数字规模扩大10倍:
windows:(出错)
K20:
K80:
由于windows显卡出错,下面的实验,仅在服务器上运行:
修改线程数为256:
素数为2048261
K20:
K80:
素数为20232347
K20:
K80:
发现,效率并没有提高,继续修改线程为1024,重新编译,经过测试,时间反而还提高了,估计是程序处理的有问题,看到老师PPT,由于是做的东西不太相同,所以没法按PPT上的方法,对线程数进行修改处理。
###5.2.2 优化测试
所以换一个思考方式:每个线程判断一个数是否可以被整除,将每线程判断结果写入shared memory内,然后统计结果,如果全部不能被整除,那就是素数。其中计时方式不参考老师ppt,仍然采用cudaApi。cpu不再记录时间(无意义),仅仅用于验证数据是否正确。
仿照老师上课讲的内容,进行修改,代码如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151#include <stdio.h>
#include <stdlib.h>
#include <cuda_runtime.h>
#include<iostream>
#include<time.h>//time.h头文件
using namespace std;
#define THREAD_NUM 1
#define BLOCK_NUM 1
//host code
//产生一个要被测试的数组
//
void GenerateNumbers(long *number, int size)
{
for (int i = 0; i < size - 2; i++) {
number[i] = i + 2;
}
}
//device code
//内核函数
//
__global__ static void IsPrime(long *num, bool* result, int TEST)
{
extern __shared__ bool shared[];
const int tid = threadIdx.x; //块内线程索引
const int bid = blockIdx.x; //网格中线程块索引
result[bid] = false;
int i;
for (i = bid * THREAD_NUM + tid; i < TEST; i += BLOCK_NUM * THREAD_NUM)
{
if (TEST % num[bid*bid * THREAD_NUM + tid] == 0) //能整除
{
shared[tid] = true;
}
else
{
shared[tid] = false;
}
}
__syncthreads(); //同步函数
if (tid == 0)
{
for (i = 0; i<THREAD_NUM; i++)
{
if (shared[i])
{
result[bid] = true;
}
}
}
}
//原始素数求法
bool is_prime(int x)
{
if (x == 0 || x == 1)
return false;
for (int j = 2; j < x; j++)
{
if (x%j == 0)
return false;
}
return true;
}
//host code
//主函数
//
int main()
{
int TEST;
cin >> TEST;
long *data = new long[TEST];
GenerateNumbers(data, TEST); //产生要测试的数组
//定义并分配内存
long* gpudata;
bool* result;
cudaMalloc((void**)&gpudata, sizeof(long)* TEST);
cudaMalloc((void**)&result, sizeof(bool)*BLOCK_NUM);
//数据拷贝
cudaMemcpy(gpudata, data, sizeof(long)* TEST, cudaMemcpyHostToDevice);
//api计时
cudaEvent_t start, stop;
float Gpu_time;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
//调用内核函数
IsPrime << <BLOCK_NUM, THREAD_NUM, THREAD_NUM * sizeof(bool) >> >(gpudata, result,TEST);
//api计时结束
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&Gpu_time, start, stop); //GPU 测时
cudaEventDestroy(start);
cudaEventDestroy(stop);
printf("Gpu time is: %f ms\n", Gpu_time);
bool sum[BLOCK_NUM];
//结果拷贝
cudaMemcpy(&sum, result, sizeof(bool)*BLOCK_NUM, cudaMemcpyDeviceToHost);
//释放空间
cudaFree(gpudata);
cudaFree(result);
//验证结果(不参与计时)
bool isprime = true;
for (int i = 0; i < BLOCK_NUM; i++)
{
if (sum[i])
{
isprime = false;
break;
}
}
//gpu
if (isprime)
{
printf("GPU:%d is a prime\n", TEST);
}
else
{
printf("GPU:%d is not a prime\n", TEST);
}
//cpu
int begin, end;//定义开始和结束标志位
begin = clock();//开始计时
if (is_prime(TEST))
printf("CPU:%d is a prime\n", TEST);
else
printf("CPU:%d is not a prime\n", TEST);
end = clock();//结束计时
printf("Cpu time is: %d\n", end-begin);
return 0;
}
每个具体的线程,即blockid的某个threadid的线程,所计算的是一个数或者好几个数,总共有block_NUM*THREAD_NUM这么多的线程,假设要计算素数test,则必须对所有从2,3,4...到test-1这么多数做除法运算,总共应该是test-1个数,这些数就按顺序安排到block_NUM*THREAD_NUM这些线程上运行,多出来的再次重复的安排也就是说i和i += BLOCK_NUM * THREAD_NUM都应该是安排在同一个线程块的同一个线程id上运行。
测试1:1
2#define THREAD_NUM 1
#define BLOCK_NUM 1
K20:
K80:
测试2:1
2#define THREAD_NUM 1024
#define BLOCK_NUM 1
K20:
K80:
从实验结果来看,提升块并没有加速时间,怀疑用错了GPU计时,所以利用nvprof查看:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32ubuntu@ubuntu:~/cuda_test$ nvprof ./prime_3.out
202261583
==1365== NVPROF is profiling process 1365, command: ./prime_3.out
Gpu time is: 0.072064 ms
GPU:202261583 is a prime
CPU:202261583 is a prime
Cpu time is: 811364
==1365== Profiling application: ./prime_3.out
==1365== Profiling result:
Time(%) Time Calls Avg Min Max Name
99.97% 236.60ms 1 236.60ms 236.60ms 236.60ms [CUDA memcpy HtoD]
0.03% 62.752us 1 62.752us 62.752us 62.752us IsPrime(long*, bool*, int)
0.00% 3.3600us 1 3.3600us 3.3600us 3.3600us [CUDA memcpy DtoH]
==1365== API calls:
Time(%) Time Calls Avg Min Max Name
58.06% 337.27ms 2 168.64ms 375.87us 336.90ms cudaMalloc
40.76% 236.75ms 2 118.37ms 37.190us 236.71ms cudaMemcpy
0.52% 3.0149ms 364 8.2820us 246ns 279.56us cuDeviceGetAttribute
0.43% 2.5004ms 4 625.10us 615.91us 629.75us cuDeviceTotalMem
0.15% 878.57us 2 439.28us 170.20us 708.37us cudaFree
0.04% 232.24us 4 58.060us 56.043us 60.786us cuDeviceGetName
0.02% 124.54us 1 124.54us 124.54us 124.54us cudaEventSynchronize
0.01% 43.690us 1 43.690us 43.690us 43.690us cudaLaunch
0.00% 9.5710us 2 4.7850us 1.7290us 7.8420us cudaEventCreate
0.00% 9.3820us 2 4.6910us 2.9250us 6.4570us cudaEventRecord
0.00% 7.5690us 3 2.5230us 270ns 6.7980us cudaSetupArgument
0.00% 5.0280us 12 419ns 245ns 762ns cuDeviceGet
0.00% 4.3560us 1 4.3560us 4.3560us 4.3560us cudaEventElapsedTime
0.00% 2.9730us 3 991ns 281ns 2.0150us cuDeviceGetCount
0.00% 2.8080us 2 1.4040us 740ns 2.0680us cudaEventDestroy
0.00% 1.9640us 1 1.9640us 1.9640us 1.9640us cudaConfigureCall
发现,计算时间确实很短,所以基本不需要优化。
###5.2.3 其他优化
由于选题有问题,导致并不能测出优化前后的结果对比,但还是照着PPT上的其他思路进行优化,使用block与grid内建对象,进行重新改写kernel函数,并通过标记一个值进行返回,这样可以做到较好的效果,代码如下:1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87#include "stdio.h"
#include "stdlib.h"
#include<iostream>
#include <cuda_runtime.h>
using namespace std;
//define kernel
__global__ void prime_kernel(int *d_mark, int N)
{
int i = blockIdx.x * 256 + threadIdx.x + 16 + threadIdx.y;//threadIdx.x*16
if (i >= 2 && N%i == 0)//判断条件正确
*d_mark = 0;
}
//原始素数求法
bool is_prime(int x)
{
if (x == 0 || x == 1)
return false;
for (int j = 2; j < x; j++)
{
if (x%j == 0)
return false;
}
return true;
}
int main()
{
int N;
cin >> N;
int *h_mark;
h_mark = (int *)malloc(sizeof(int)* 1);
*h_mark = 1;//if *h_mark == 1 N is a prime number; else N is not a prime number
//分配空间
int *d_mark;
cudaMalloc((void **)&d_mark, sizeof(int));
// 拷贝数据
cudaMemcpy(d_mark, h_mark, sizeof(int), cudaMemcpyHostToDevice);
// 设置执行参数
dim3 block(16, 16); //可以用一维实现,(256,1)
dim3 grid(4, 1);
//api计时
cudaEvent_t start, stop;
float Gpu_time;
cudaEventCreate(&start);
cudaEventCreate(&stop);
cudaEventRecord(start, 0);
//执行kernel
prime_kernel << <block, grid >> >(d_mark, N);//block和grid位置反了
//api计时结束
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);
cudaEventElapsedTime(&Gpu_time, start, stop); //GPU 测时
cudaEventDestroy(start);
cudaEventDestroy(stop);
printf("Gpu time is: %f ms\n", Gpu_time);
// 结果拷贝
cudaMemcpy(h_mark, d_mark, sizeof(int), cudaMemcpyDeviceToHost);
//GPU输出
if (*h_mark == 1)
printf( "%d is a prime number\n", N);
else
printf( "%d is not a prime number\n", N);
//释放
cudaFree(d_mark);
//cpu输出
if (is_prime(N))
printf("CPU:%d is a prime\n", N);
else
printf("CPU:%d is not a prime\n", N);
return 0;
}
k20:
k80:
##5.3 总结
本次实验,分成下面几步:
1.串行:cpu上,测试一个数是否为素数
2.丢在GPU上:改写成kernel函数
3.基本并行化:每个线程判断一个数是否可以被整除,将每线程判断结果写入shared memory内,然后统计结果,如果全部不能被整除,那就是素数。
4、优化:使用block与grid内建对象,进行重新改写kernel函数
#六、实验心得
1.学会了CUDA编程的基本原理,能够编写简单的CUDA程序并且比未优化的CPU版本运行速度快。
2.初步了解了CUDA并行化的基本知识。
3.对cuda编程工具有了较好的了解,对liunx的使用有了提升。